Home
Class 10
MATHS
Prove that (tan^(2)A-1)/(tan^(4)A-1)=cos...

Prove that `(tan^(2)A-1)/(tan^(4)A-1)=cos^(2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1-tan^(2)A)/(1+tan^(2)A)=2cos^(2)A-1

Prove that tan^(2)A/(tan^2A-1)+cosec^(2)A/(sec^2A-cosec^2A)=(1)/(1-2cos^(2)A)

Prove that (1)/(2)tan^(-1)(4/3)=tan^(-1)(1/2)

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)