Home
Class 12
MATHS
int x(a^(2)-x^(2))^(n/2)*dx...

`int x(a^(2)-x^(2))^(n/2)*dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int(a^(2)+x^(2))^((n)/(2))dx, then show that I_(n)=((x(a^(2)+x^(2))^((n)/(2)))/(n+1))+(na^(2))/(n+1)I(n-2)

int((a^(2)-x^(2)))/(x^(2))dx

int(dx)/((a^(2)-x^(2))^(2))-(1)/(2a^(2))int(dx)/(a^(2)-x^(2))

If n is a positive integer and u_(n)=int x^(n)sqrt(a^(2)-x^(2))dx

Evaluate: ( i ) int(x^(2))/((a^(2)-x^(2))^(3/2))dx (ii) int(x^(7))/((a^(2)-x^(2))^(5))dx

int x sqrt((a^(2)-x^(2))/(a^(2)+x^(2)))dx

int x sqrt((a^(2)-x^(2))/(a^(2)+x^(2)))dx=

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

int_(-a)^(a)(x^(2))/(a^(2)+x^(2))dx=