Home
Class 11
MATHS
int(0)^(1)t^(5)*sqrt(1-t^(2))*dt...

`int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)t^(2)sqrt(1-t)*dt

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If y=int_(0)^(x)(t^(2))/(sqrt(t^(2)+1))dt then rate of change of y with respect to x when x=1 is

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

Let f(x)=int_(0)^(x)(t^(2))/(sqrt(1+t^(2)))backslash dt. Then int_(1)^(2)(1)/({f'(x)}^(2))backslash dx equals

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

lim_(x rarr oo)int_(0)^(x){(1)/(sqrt(1+t^(2)))-(1)/(1+t)}dt=