Home
Class 7
MATHS
(16*2^(n+1)-4*2^(n))/(16*2^(n+2)-2*2^(n+...

`(16*2^(n+1)-4*2^(n))/(16*2^(n+2)-2*2^(n+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify :(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))

Simplify: (3^5)^(11)xx(3^(15))^4-(3^5)^(18)xx(3^5)^5 , (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Simplify: frac(16 xx 2^(n+1)-4 xx 2^(n))(16 xx 2^(n+2)-2 xx 2^(n+2)).

(2^(n)+2^(n-1))/(2^(n+1)-2^(n))

Simplify: frac(16 xx 2^(n+1)-8 xx 2^(n))(16 xx 2^(n+2)-4 xx 2^(n+1))

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))

[ If 2 is the sum of infinity of a G.P.,whose first clement is 1 ,then the sum of the first n terms is [ 1) (2^(n)-1)/(2^(n)), 2) (2^(n)-1)/(2^(n-1)), 3) (2^(n-1)-2)/(2), 4) (2^(n-1)-1)/(2^(n))]]