Home
Class 12
MATHS
Let cos(pi)/(7),cos(3 pi)/(7),cos(5 pi)/...

Let `cos(pi)/(7),cos(3 pi)/(7),cos(5 pi)/(7)` are the roots of equation `8x^(3)-4x^(2)-4x+1=0` Q.The value of `sec((pi)/(7))+sec((3 pi)/(7))+sec((5 pi)/(7))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sec((pi)/(7))*sec(2(pi)/(7))*sec(3(pi)/(7)) is

let cos((pi)/(7)),cos((3 pi)/(7)),cos((5 pi)/(7)), the roots of equation 8x^(3)-4x^(2)-4x+1=0 then the value of sin((pi)/(14)),sin((3 pi)/(14)),sin((5 pi)/(14))

cos.(2pi)/(7)+cos.(4pi)/(7)+cos.(6pi)/(7)

the value of (cos pi)/(7)cos(2(pi)/(7))cos(3(pi)/(7)) is

cos ((pi) / (7)) cos ((2 pi) / (7)) cos ((4 pi) / (7)) =

Find the value of cos(2 pi)/(7)+cos(4 pi)/(7)+cos(6 pi)/(7)

Find the value of 2cos^(3)((pi)/(7))-cos^(2)((pi)/(7))-cos((pi)/(7))

Find the value of (cos(2 pi))/(7)(cos(4 pi))/(7)(cos(6 pi))/(7)

cos ((pi) / (7)) * cos ((2 pi) / (7)) * cos ((3 pi) / (7)) =