Home
Class 11
MATHS
If alpha,beta are roots of ax^(2)+bx+c=0...

If `alpha,beta` are roots of `ax^(2)+bx+c=0` then `(1)/(alpha)+(1)/(beta)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

if alpha,beta are root of ax^(2)+bx+c=0 then ((1)/(alpha^(2))-(1)/(beta^(2)))^(2)

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha and beta are roots of ax^(2)-bx+c=0 then (alpha+1)(beta+1) is equal to

If alpha,beta are the roots of ax^(@)+bx+b=0, then sqrt((alpha)/(beta))+sqrt((beta)/(alpha))+sqrt((b)/(a)) is equal to