Home
Class 12
MATHS
lim(n rarr oo)(pi n)^(2/n)=...

`lim_(n rarr oo)(pi n)^(2/n)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n^(2))/(2^(n))

The value of lim_(n rarr oo)[tan((pi)/(2n))tan((2 pi)/(2n))......tan((n pi)/(2n))]^((1)/(n))

f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)), find lim_(x rarr0)f(x)

Evaluate the limit: (lim_(n rarr oo)cos(pi sqrt(n^(2)+n)) when n is an integer

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_ (n rarr oo) (pi) / (6n) [sec ^ (2) ((pi) / (6n)) + sec ^ (2) (2 * (pi) / (6n)) + .... ..... + sec ^ (2) ((n-1) (pi) / (6n)) + (4) / (3)]

lim_(n rarr oo)(1-(2)/(n))^(n)

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)