Home
Class 12
MATHS
" 0.The value of the determinant "|[1,x,...

" 0.The value of the determinant "|[1,x,x^(2)],[1,b,b^(2)],[1,c,c^(2)]|" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

Without expanding, show that the value of each of the determinants is zero: |[1,a, a^2-bc],[1,b,b^2-ac],[1,c,c^2-ab]|

[" The value of determinant "|[1,-1,2],[-2,3,5],[-2,0,-1]|=................],[" a) "1," b) "21," c) "17," d) "3],[" a "],[" b "],[" c "],[" a "]

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c) where a, b, c are all different, then the determinant |(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))| vanishes when