Home
Class 12
MATHS
Let L=lim(x rarr1)(sin(6cos^(-1)x))/(sqr...

Let `L=lim_(x rarr1)(sin(6cos^(-1)x))/(sqrt(1-x^(2)))` and `M=lim_(x rarr1)(1-cos(6cos^(-1)x))/(1-x^(2))` .Then value of `L+M` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1-cos x sqrt(cos2x))/(x^(2))

lim_(x rarr1^(-))(1-x3)/((cos^(-1)x3)^(2))

lim_(x rarr1)[sin^(-1)x]=

lim_(x rarr0)(1-cos4x)/(1-cos6x)

lim_(x rarr1)(sqrt(1-cos2(x-1)))/(x-1)

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)(cos x)^(1/x^(2))

lim_(x rarr0)(cos2x-1)/(cos x-1)

lim_(x rarr0)(cos2x-1)/(cos x-1)

lim_(x rarr0)(sin x^(2)(1-cos x^(2)))/(x^(6))