Home
Class 10
MATHS
sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x...

`sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

Prove that sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

sin^(4)x-cos^(4)x=sin^(2)x-cos^(2)x

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .