Home
Class 12
MATHS
The number of ordered pairs (alpha,beta)...

The number of ordered pairs `(alpha,beta)`, where `alpha,beta in(-pi,pi)` satisfying `cos(alpha-beta)=1` and` cos(alpha+beta)=(1)/(e)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pairs ( alpha, beta ) ,where alpha, beta in (-pi, pi) satisfying cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2) is :

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

Number of ordered pair (alpha,beta), satisfying the condition alpha^(8)+beta^(8)=8 alpha beta-6 is

Find the value of alpha and beta,0

If cos(alpha-beta)+1=0, show that cos alpha+cos beta=0 and sin alpha+sin beta=0

If 0

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=