Home
Class 12
MATHS
" If ||log(3)x|-1|^(log(3)^(2)x+3)=||log...

" If `||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4`) then "

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to

Solve log_(4)(8)+log_(4)(x+3)-log_(4)(x-1)=2

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

log_(2)log_(3)log_(4)(x-1)>0

If x=(2)^((log_(2)3log_(3)4log_(4)5)......log_(19)20),y=5^(log_(2)3)-3^(log_(2)5),z=log_(sqrt(256))sqrt(log_(sqrt(2))4) then value of (x+y).z is