Home
Class 12
MATHS
The possible values of sqrt(x^(2)+x+1)-s...

The possible values of `sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)` as x ranges over all real numbers is an interval `(a,b)`,then `|b-a| = `

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve,for real x,sqrt(x^(2)+3x+2)<1+sqrt(x^(2)-x+1)

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Number of possible integral values of sqrt(x-2)+sqrt(6-x) is

If sqrt(x^(2)-x +1) + (1)/(sqrt(x^(2)-x+1))=2-x^(2) , How many value possible for x?

Show that 1+x ln(x+sqrt(x^(2)+1))>=sqrt(1+x^(2)) for all x>=0

Let f(x)=sqrt((x^(2)+ax+4)/(x^(2)+bx+16)) is defined for all real x then find the number of possible ordered pairs (a,b)

The largest set of real values of x for which f(x)=sqrt((x+2)(5-x))-(1)/(sqrt(x^(2)-4))- is a real function is