Home
Class 11
MATHS
" If I=int(0)^(1)(1-x^(4))^(7)dx and J=i...

" If `I=int_(0)^(1)(1-x^(4))^(7)dx` and `J=int_(0)^(1)(1-x^(4))^(6)dx` then `(I)/(J)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(2x)/((1+x^(4)))dx

I=int_(0)^(1)((1+x)/(2-x))dx

The valued of (29int_(0)^(1)(1-x^(4))^(7)dx)/(4int_(0)^(1)(1-x^(4))^(6)dx)=

If I=int_(0)^(1)(1)/(1+x^(8))dx then:

int_(0)^(1)(x^(4))/(1+x^(10))dx=

Find the value of (29int_(0)^(1)(1-x^(4))^(7)dx)/(4int_(0)^(1)(1-x^(4))^(6))dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1)x(1-x)^(4)dx=(1)/(30)

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

int_(0)^(1)x^(4)sqrt(x^(5)+1)dx