Home
Class 12
MATHS
If for a complex number z=x+iy , sec^(-1...

If for a complex number `z=x+iy` , `sec^(-1)((z-2)/(i))` is a real angle in `(0,(pi)/(2)),(x,y in R),` then locus of `z`

Promotional Banner

Similar Questions

Explore conceptually related problems

The modulus of complex number z=x+iy will be

If z = x + iy and 0 le sin^(-1) ((z-4)/(2i)) le (pi)/(2) then

If z=x+iy and real part ((z-1)/(2z+1))=1 then locus of z is

if Amp((z+2)/(z-4i))=(pi)/(2), then the locus of z=x+iy is

If z=x+iy and arg((z-2)/(z+2))=(pi)/(6), then find the locus of z.

If z=x+iy is a complex number satisfying |z+(i)/(2)|^(2)=|z-(i)/(2)|^(2), then the locus of z is

The complex numbers z = x + iy which satisfy the equation |(z-5i)/(z+5i)|=1 , lie on

If z be any complex number (z!=0) then arg((z-i)/(z+i))=(pi)/(2) represents the curve