Home
Class 12
MATHS
int((x^(2)+1)dx)/((x^(4)-x^(2)+1)cot^(-1...

`int((x^(2)+1)dx)/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))` is : (where `C` is arbitrary constant) (Multiple Correct Type)
1) `ln|cot^(-1)(x-(1)/(x))|+C`
2) `-ln|cot^(-1)(x-(1)/(x))|+C`
3) `ln|tan^(-1)((1)/(x)-x)|+C`
4) `-ln|tan^(-1)((1)/(x)-x)|+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int (x^(x)(x^(2x)+1)("ln"x+1))/(x^(4x)+1)dx

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

int(2x+3)/((x-1)(x^(2)+1))dx=log_(e){(x-1)^((5)/(2))(x^(2)+1)^(a)-(1)/(2)tan^(-1)x+C,x>1 where C is any arbitrary constant,then the value of a'a' is