Home
Class 14
MATHS
The value of vecA.(vecAxxvecB) is...

The value of `vecA.(vecAxxvecB)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (vecA+vecB),(vecAxxvecB) ?

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk then value of |vecAxxvecB| will be

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If veca, vecb, vecc are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of (veca+vecb).(vecbxxvecc)+(vecb+vecc).(veccxxveca)+(vecc+veca).(vecaxxvecb) , is

Prove that vecA.(vecAxxvecB)=0

If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt(5)) vecb=(2hati+hatj+3hatk)/(sqrt(14)) then the value of (2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)] , is