Home
Class 8
MATHS
If a normal chord at a point t(!=0) on t...

If a normal chord at a point `t(!=0)` on the parabola `y^(2)=9x` subtends a right angle at its vertex, then `t=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a normal chord at a point t(t!=0 ) on the parabola y^(2)=9x subtends a right angle at its vertex,then t=

If a normal chord at a point on the parabola y^(2)=4ax subtends a right angle at the vertex, then t equals

If the normal chord at a point t on the parabola y^(2)=4ax subtends a right angle at the vertex, then a value sqrt(2)t=

If the normal chord at a point t on the parabola y^(2)=4ax subtends a right angle at the vertex, then a value sqrt(2)t=

Statement 1: Normal chord drawn at the point (8,8) of the parabola y^(2)=8x subtends a right angle at the vertex of the parabola.Statement 2: Every chord of the parabola y^(2)=4ax passing through the point (4a,0) subtends a right angle at the vertex of the parabola.

If the chord joining the points t_(1) and t_(2) on the parabola y^(2)=4ax subtends a right angle at its vertex then t_(2)=

If the normal chord at t on y^(2)=4ax subtends a right angle at vertex then t^(2)=

A normal chord of the parabola y^(2)=4ax subtends a right angle at the vertex if its slope is

The normal chord of the parabola y^(2)=4ax subtends a right angle at the vertex.Then the length of chord is