Home
Class 11
MATHS
If (sin^4 theta)/a + (cos^4 theta)/b = 1...

If `(sin^4 theta)/a + (cos^4 theta)/b = 1/(a+b)`, then `(sin^8 theta)/a^3 + (cos^8 theta)/b^3 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), prove that (sin^(8)theta)/(a^(3))+(cos^(4)theta)/(b^(3))=(1)/((a+b)^(3))(sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=(1)/((a+b)^(2n-1)),n in N

If sin((theta)/(2))=a,cos((theta)/(2))=b then (1+sin theta)/(3sin theta+4cos theta+5)=

if (cos^(2)theta)/(a)=(sin^(2)theta)/(b) then (cos^(4)theta)/(a)+(sin^(4)theta)/(b)=?

(sin ^ (3) theta + sin3 theta) / (sin theta) + (cos ^ (3) theta-cos3 theta) / (cos theta) =

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

If 3sin theta =2 cos theta , then (4sin theta - cos theta)/(4cos theta+sin theta) is equal to :