Home
Class 12
MATHS
The value of the integral I=int(0)^( pi/...

The value of the integral `I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx` is equal to (where,[.] denotes the greatest integer function)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int _(0) ^(2npi) (|sin x | - [|(sin x )/(2) | ]) dx is equal to (where [**] denotes the greatest integer function)

The value of integral int_(0)^((pi)/(2))(cos x+i sin x)/(cos x-i sin x)dx

The value of the integral int_(a)^(a+pi/2)(|sin x|+|cos x|)dx, is

If I=int_(0)^( pi)x(sin^(2)(sin x)+cos^(2)(cos x))dx , then [l]= (where) [.] denotes the greatest integer function

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

int_(0)^(pi//4)"sin" x d(x- [x]) is equal to , where [x] denotes greatest integer function-

The value of the definite integral int_(0)^((pi)/(2))(cos^(10)x*sin x}dx, is equal to

The value of definite integrals int_(0)^(2 pi)(max(sin x,cos x)-min sin x,cos x)dx is equal to