Home
Class 12
MATHS
If A=([1,0],[1,1]) then A^(n)=...

If `A=([1,0],[1,1])` then `A^(n)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

Let {:[(1,2),(0,1):}][{:(1,2),(0,1):}]......[{:(1,n-1),(0,1):}]=[{:(1,78),(0,1):}] If A=[{:(1,n),(0,1):}] then A^(-1)=

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If prod_(r=1)^(n)[[1,r],[0,1]]=[[1,120],[0,1]] then n = ?

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)