Home
Class 12
MATHS
f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-m...

`f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Single Correct Questions +3 1-1 41. Iff (2) = (sin 2 2)e-2 sin, then max f(x)-min f (x) = (A) (B)22 (C) 1 (D) 2e

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If f(x)=(sin^(2)x+4sin x+5)/(2sin^(2)x+8sin x+8) then range of f(x) is

If f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2)) then the period of f is

Let f:R rarr R be defined as f(x)=7e^(sin^(2)x)e^(cos^(2)x)+2, then the value of sqrt(7f_(min))+f_(max) is equal to

If f(x) = ((a+x)^(2)sin(a+x)-a^(2)sin a)/(x) , x !=0 , then the value of f(0) so that f is continuous at x = 0 is

If f(x)=(e^(x)+e^(-x)-2)/(x sin x) , for x in [(-pi)/(2), (pi)/(2)]-{0} , then for f to be continuous in [(-pi)/(2), (pi)/(2)], f(0)=

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?