Home
Class 12
MATHS
lim(n rarr oo)((1^(4))/(1^(5)+n^(5))+(2^...

`lim_(n rarr oo)((1^(4))/(1^(5)+n^(5))+(2^(4))/(2^(5)+n^(5))+(3^(4))/(3^(5)+n^(5))+--+(n^(4))/(n^(5)+n^(5)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(5^((1)/(n))+3^(1/n)-1)^(n)

lim _(nrarroo)(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

lim_(n rarr oo)(5^(n+1)+3^(n)-2^(2n))/(5^(n)+2^(n)+3^(2n+3))

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

The value of lim_(n rarr oo)((1^(1)+2^(2)+...+n^(2))(1^(3)+2^(3)+...+n^(3))(1^(4)+2^(4)+...+n^(4)))/((1^(5)+2^(5)+...+n^(5))^(2)

lim_(n rarr oo)((n^(3)-2n^(2)+1)^((1)/(2))+(n^(4)+1)^((1)/(3 ))))/((n^(6)+6n^(5)+2)^((1)/(4))-(n^(7)+3n^(2)+1)^((1 )/(5)))

lim_ (n rarr oo) [(1 ^ (3)) / (n ^ (4) + 1 ^ (4)) + (2 ^ (3)) / (n ^ (4) + 2 ^ (4)) ++ (1) / (2n)] =

lim_ (n rarr oo) (((n ^ (5) +2) ^ ((1) / (4))) - ((n ^ (2) +1) ^ ((1) / (3))) ) / ((n ^ (4) +2) ^ ((1) / (5)) - (n ^ (3) +1) ^ ((1) / (2))) is