Home
Class 11
MATHS
Show that cos((pi)/(2)-x)=sin x...

Show that `cos((pi)/(2)-x)=sin x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: sin((pi)/(2)-x)=cos x

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that cos((pi)/(4)-x)cos((pi)/(4)+x)=(1)/(2)-sin^(2)x

Show that : int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi)/(2)+x)=cot^(2)x

Show that (sin x+cos x)^(2)+(sin x-cos x)^(2)=2

Show that: int_(0)^( pi/2)f(sin2x)sin xdx=sqrt(2)int_(0)^( pi/4)f(cos2x)cos xdx

Prove that int_(0)^((pi)/(2))(x sin x cos xdx)/(cos^(4)x+sin^(4)x)=(pi^(2))/(16)