Home
Class 12
MATHS
|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,z...

`|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

factorise: det[[x,y,zx^(2),y^(2),z^(2)yz,zx,xy]]

If Delta_1 = |[1,1,1] , [x^2, y^2, z^2] , [x,y,z]| and Delta_2=|[1,1,1] , [yz, zx, xy] , [x,y,z]| then without expanding show that Delta_1= Delta_2

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

Show that, |[1,x,yz],[1,y,zx],[1,z,xy]|=|[1,x,x^(2)],[1,y,y^(2)],[1,z,z^(2)]|

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

yz-x^(2)quad zx-y^(2)quad xy-z^(2)| Prove that det[[yz-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]] is divisible by (x+y+z), and hence find the quotient.