Home
Class 13
MATHS
The value of int[f(x)]^(n)f'(x)dx=...

The value of `int[f(x)]^(n)f'(x)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

IF int_(-3)^2 f(x) dx=7/3 and int_(-3)^9 f(x) dx=-5/6 then what is the value of int_(2)^(9)f(x) dx

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

The value of int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx is

int[f(x)+x.f'(x)]dx=

If int_(-3)^(2)f(x) dx= 7/3 and int_(-3)^(9) f(x) dx = -5/6 , then what is the value of int_(2)^(9)f(x) dx ?

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is