Home
Class 10
MATHS
x^(2)-(sqrt(2)+1)x+sqrt(2)=0...

`x^(2)-(sqrt(2)+1)x+sqrt(2)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

Solve the following quadratic equations : x^(2)-(1+sqrt2)x+sqrt2=0

State whether the following quadratic equations have two distinct real roots. Justicy your answer: sqrt(2)x^(2)-3/(sqrt(2))x+1/(sqrt(2))=0

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

The area enclosed by the curve y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is 4(sqrt(2)-2) (b) 2sqrt(2)(sqrt(2)-1)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

(x-sqrt(2))^(2)-sqrt(2)(x+1)=0

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|<(1)/(2),x!=0