Home
Class 12
MATHS
If : y=(sin^(-1)x)/(sqrt(1-x^(2)))," the...

If : `y=(sin^(-1)x)/(sqrt(1-x^(2)))," then: "(1-x)^(2)*(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), find (dy)/(dx).

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y=sin ^(-1)(2x sqrt (1-x^(2))),then (dy)/(dx)=

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y= sin ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If y=xsin^(-1)x+sqrt(1-x^2) then (dy)/(dx)=