Home
Class 12
MATHS
If the major axis is n times the minor a...

If the major axis is n times the minor axis of the ellipse,then eccentricity is
1) `(sqrt(n-1))/(n)` 2) `(sqrt(n-1))/(n^(2))`
3) `(sqrt(n^(2)-1))/(n^(2))` 4)`(sqrt(n^(2)-1))/(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr0)(sqrt(1+n^(2))-sqrt(1-n+n^(2)))/(3^(n)-1)

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

lim_ (n rarr oo) ((sqrt (n ^ (2) + n) -1) / (n)) ^ (2sqrt (n ^ (2) + n) -1)

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+(-n)/(n sqrt((n^(2)+n^(2))))=

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))