Home
Class 10
MATHS
The value of [(secA+tanA)(1-sinA)] is eq...

The value of `[(secA+tanA)(1-sinA)]` is equal to `tan^2A(b)sin^2A` (c) `cosA` (d) `sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1-sinA+cosA)^2 is equal to :

Prove that : (secA+tanA)(1-sinA)=cosA

(1-sinA+cosA)^(2) is equal to ?

The value of ("cosec"a-sina)(seca-cosa)(tana+cota) is

secA(1-sinA)(secA+tanA)=1

((2sinA)(1+sinA))/(1+sinA+cosA) is equal to:

((2sinA)(1+sinA))/(1+sinA+cosA) is equal to:

The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))

The value of 2sinA cos^(3)A -2sin^(3)A cosA is

The value of ((sinA)/(1-cosA)+(1-cosA)/ (sinA)) div ((cot^2 A)/(1+cosecA)+1) is : ((sinA)/(1-cosA)+(1-cosA)/ (sinA)) div ((cot^2 A)/(1+cosecA)+1) का मान है :