Home
Class 12
MATHS
For observations xi given sum(i=1)^10 (...

For observations `x_i` given `sum_(i=1)^10 (X_i - 5) = 10` and `sum_(i=1)^10 (X_i - 5)^2 = 40` If mean and variance of observations `(x_1 - 3),(x_2 - 3),(x_3 - 3).........(x_10 - 3)` is `lambda` & `mu` respectively then ordered pair `(lambda, mu)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

If sum_(i=1)^(10)(x_(i)-15)=12 and sum_(i=1)^(10)(x-15)^(2)=18 then the S.D.of observation x_(1),x_(2),x_(3),....x_(10) is:

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If sum_(i=1)^10 sin^-1 x_i = 5pi then sum_(i=1)^10 x_i^2 = (A) 0 (B) 5 (C) 10 (D) none of these

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(n)(x_(i)-2)=110, sum_(i=1)^(n)(x_(i)-5)=20 , then what is the mean?