Home
Class 10
MATHS
If int x^2/(1-x^4) dx = Plog|(1+x)/(1-x)...

If `int x^2/(1-x^4) dx = Plog|(1+x)/(1-x)|+Qtan^(-1)x+c` then the value of P and Q is

Promotional Banner

Similar Questions

Explore conceptually related problems

int (x+1)sqrt(1-x-x^(2))dx =-(1)/(3)(1-x-x^(2))^(3/2)+A+c .Then the value of A is

int(1)/((x+1)[(x+1)^(4)+1])dx=(1)/(4)*log f(x)+c then the value of f(x) at x=1 is

int(x+1)sqrt(1-x-x^(2))dx=-(1)/(3)(1-x-x^(2))^(3/2)+A+c .Then the value of A is

The value int_(-2)^(2) (plog ((1+x)/(1-x)) + q log ((1-x)/(1+x))^(-2) + r) dx depends on the value of

Let int(x^(2))/(sqrt(1-x))dx=psqrt((1-x))(3x^(2)+4x+8), then value of p is

If int((1-x^(7)))/(x(1+x^(7)))dx=Plog|x|+Qlog|x^(7)+1|+c , then

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is