Home
Class 12
MATHS
I=int e^(x log x)(1+log x)...

`I=int e^(x log x)(1+log x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int e^(x log a)+e^(a log x)+e^(a log a)dx

int(e^(x log a)+e^(a log x)+e^(a log a))dx

int(e^(x log a)+e^(a log x))dx

int(e^(x log a)+e^(a log x))dx

int e^(a log x) + e^( x log a) dx is equal to

int e^(x) (e^(log x)+1) dx

f(x)=int x^(x+1)(log x+(log x)^(2))dx and f(1)=-1 then (e^(-e)f(e)+1)e^(-1)

(i) int (log x)/(x(1+log x)(2+log x)) dx

Find I=int e^(x)(log x-(1)/(x^(2)))dx

int e^(x)((1+x log x)/(x))dx