Home
Class 12
MATHS
" Let "(f(x)" be a twice differentiable ...

" Let "_(f(x)" be a twice differentiable function and "f''(0)=5*" If "lim_(x rarr0)(3f(x)-4f(3x)+f(9x))/(x^(2))=m," then "_(m-115)" is equal to ")

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

Let f(x) be a strictly increasing and differentiable function,then lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0))

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?