Home
Class 11
MATHS
Let I=int(10)^(20)(sin(30-x))/(sin x+sin...

Let `I=int_(10)^(20)(sin(30-x))/(sin x+sin(30-x))dx` .Then `I` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx , then I is equal to :

I=int(dx)/(sin x cos^(3)x)

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

(i) int(sin(x-a))/(sin x)dx

I=int(-1/x^2)sin((1)/(x))dx

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

int(sin(x+a)-sin(x-a))/(sin(x+a)+sin(x-a))dx=

I=int_1^(2)(x^(2)+sin x+9)dx

I=int(sin x)/(sin(x-a))dx