Home
Class 10
MATHS
I=int(0)^(1)e^(x^(2)-x)dx then...

`I=int_(0)^(1)e^(x^(2)-x)dx` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1)x e^(x)dx=

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten

I=int_(0)^(1)((1+x)/(2-x))dx

int_(0)^(1)x^2e^(2x)dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to