Home
Class 12
MATHS
[lim(x rarr5)(|x^(2)-9x+20|)/({x}({x}-1)...

[lim_(x rarr5)(|x^(2)-9x+20|)/({x}({x}-1))" is (where "{.}" denotes "],[" fractional part function) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr5)(x^(2)-9x+20)/(x-[x])

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

undersetlim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes the fractional part function)

If I_(1)=lim_(x rarr0^(+))(sin{x})/({x}) and I_(2)=lim_(x rarr0^(+))(sin{x})/({x}), where {.} denotes the fractional function,then

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).