Home
Class 11
MATHS
If |vec A+vec B| = |vec A|-|vec B| , the...

If `|vec A+vec B| = |vec A|-|vec B|` , then the angle between `vec A` and `vec B` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec A + vec B|= |vec A|+|vec B| , then what is the angle between vec A and vec B .

If |vec A + vec B|=|vec A-vecB| , finf the angle between vec A and vec B .

If vec A and vec B are two non-zero vectors such that |vec A+vec B|=(|vec A-vec B|)/(2) and |vec A|=2|vec B| then the angle between vec A and vec B is theta such that cos theta=-(m)/(n) (where m and n are positive integers and (m)/(n) lowest form then find m+n

If |vec A + vec B=|vec A - vec B| , then angle between vec A and vec B is _____.

If |vec A+ vec B| = |vec A| + |vec B | , then angle between A and B will be

If |vec a|=|vec b|=|vec a-vec b| then the angle between vec a and vec b is

If |vec(A)+vec(B)|=|vec(A)|=|vec(B)| then the angle between vec(A) and vec(B) is

If |vec(A) xx vec(B)| = |vec(A).vec(B)| , then the angle between vec(A) and vec(B) will be :

If |vec(A)+vec(B)| = |vec(A)-vec(B)| , find the angle between vec(A) and vec(B) .

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)