Home
Class 12
MATHS
lim(n rarr oo)(sin(1)/(sqrt((n))))((1)/(...

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

Answer

Step by step text solution for lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2))) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

lim_ (n rarr oo) (sin (n theta)) / (sqrt (n))