Home
Class 12
MATHS
Consider f(x)=-sin^(3)x+3sin^(2)x+5 in x...

Consider `f(x)=-sin^(3)x+3sin^(2)x+5` in `x in[0,(pi)/(2)]` Let `M,m` be the respective maximum and minimum values of `f(x)` which occur at `a` and `b` respectively.Identify the correct option(s)

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum and minimum values of f(x)= 6 sin x cos x +4cos2x are respectively

Let f(x)=-sin^(3)x+3sin^(2)x+5 on [0,(pi)/(2)]. Find the local maximum and local minimum of f(x)

If f(x)=2sin^(3)x-3sin^(2)x+12sin x+5AA x in(0,pi/2) then

The maximum and minimum values of f(x)=secx+logcos^(2)x,0 lt x lt 2pi are respectively

The maximum and minimum values of function f(x)=sin 3x+4 are respectively:

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

If f(x)=cos2x+4sin x+5, then the difference of maximum and minimum values of f(x) is

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

Find the maximum and minimum values of f(x) = (-x + 2sin x) " on " [0, 2pi]

Find the maximum and minimum values of f(x)=sin x in the interval [pi,2 pi].