Home
Class 12
MATHS
The value of int0^oo(x dx)/((1+x)(1+x^2)...

The value of `int_0^oo(x dx)/((1+x)(1+x^2))` is equal to

A

`(pi)/4`

B

`(pi)/2`

C

`pi`

D

none of these

Text Solution

Verified by Experts

Put` x=tan theta` and `dx=sec^(2) theta d theta`
`:. I=int_(0)^(pi//2)(tan theta sec^(2) theta)/((1+tan theta)(sec^(2)theta)) d theta` …………1
`:. I=int_(0)^(pi//2)(sin theta d theta)/(cos theta +sin theta)=(pi)/4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^oo (dx)/(1+x^4) is

The value of int_0^oo (dx)/(1+x^4) is

The value of int_(0)^(oo) (dx)/(a^(2)+x^(2)) is equal to

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to