Home
Class 12
MATHS
int0^(pi//2) cos^9 x dx= (i) 128/315 (...

`int_0^(pi//2) cos^9 x dx=` (i) `128/315` (ii)`64/63` (iii)`32/63` (iv)`128/253`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi (cos^2x)dx ,

int_0^(pi/2) (dx)/((4+9 cos^(2)x))

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

int_(0)^(pi//2)(dx)/((4+9cos^(2)x))

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

Value of integral int_(0)^( pi/2)sin^(3)x(1-cos x)^(11)dx(i)-(15)/(13)(ii)-(15)/(14)(iii)-(15)/(272)(iv)-(15)/(182)

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these