Home
Class 12
MATHS
The global maximum value of f(x0=(log)(1...

The global maximum value of `f(x0=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3],` is `-3/2(log)_(10)3` (b) `1+(log)_(10)3` `(log)_(10)3` (d) `3/2(log)_(10)3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The global maximum value of f(x)=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3], is -3/2(log)_(10)3 (b) 1+(log)_(10)3 (log)_(10)3 (d) 3/2(log)_(10)3

The global maximum value of f(x)=log_(10)(4x^(3)-12x^(2)+11x-3) . X in [2,3] , is

The global maximum value of f(x)=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3], is -3/2(log)_(10)3 (b) 1+(log)_(10)3 c) (log)_(10)3 (d) 3/2(log)_(10)3

The global maximum value of f(x0=log_(10)(4x^(3)-12x^(2)+11x-3),x in[2,3] is -(3)/(2)log_(10)3(b)1+log_(10)3log_(10)3(d)(3)/(2)log_(10)3

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

((log)_(10)(x-3))/((log)_(10)(x^(2)-21))=(1)/(2)

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has