Home
Class 12
MATHS
Consider DeltaABC with A=(veca);B=(vecb)...

Consider `DeltaABC` with `A=(veca);B=(vecb) and C=(vecc).` If `vecb.(veca+vecc)=vecb.vecb+veca.vecc;|vecb-veca|=3;|vecc-vecb|=4` then the angle between the medians `AvecM and BvecD` is

Promotional Banner

Similar Questions

Explore conceptually related problems

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If |veca|=|vecb|=|vecc|=1 and veca*vecb=vecb*vecc=vecc*veca=1/2 , then the value of 4[veca vecb vecc]^2 is:

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|= and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is