Home
Class 12
MATHS
int(cot^(-1)(e^x))/e^xdx is equal to...

`int(cot^(-1)(e^x))/e^xdx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cot^(-1)(e^(x)))/(e^(x))dx is equal to

int((x+2)/(x+4))^2 e^xdx is equal to

int((x+2)/(x+4))^2 e^xdx is equal to

int (e^x-1)e^xdx

int(e^(2x)+1)/e^xdx

If int (x^(2)-x+1)/(x^(2)+1)e^(cot^(-1)x)dx=A(x)e^(cot^(-1)x)+c , then A(x) is equal to :

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

(626int_(0)^(oo)e^(-x)sin^(25)xdx)/(int_(0)^(oo)e^(-x)sin^(23)xdx) is equal to

(626int_(0)^(oo)e^(-x)sin^(25)xdx)/(int_(0)^(oo)e^(-x)sin^(23)xdx) is equal to

(626int_(0)^(oo)e^(-x)sin^(25)xdx)/(int_(0)^(oo)e^(-x)sin^(23)xdx) is equal to