Home
Class 11
MATHS
If 2sinx=1,pi/2 < x < pi and sqrt2 cos y...

If `2sinx=1,pi/2 < x < pi and sqrt2 cos y=1, (3pi)/2 < y < 2pi,` find the value of `(tanx+tany)/(cosx-cosy).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

Prove that: cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}=pi/2-x/2 , if pi/2 < x < pi

inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-pi/2

inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-pi/2

If x in((pi)/(2),pi) and the matrix [(2sinx,3),(1,2sinx)] is singular, then the value of x is :

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

0