Home
Class 12
MATHS
The number of ways in which n different ...

The number of ways in which n different thingscan be distributed into r different groups is `r^(n__r) C_1 (r-1)^n +^rC_2(r-2)^n-....+(-1)^(r-1) * rC_(r-1) or sum_(p=0)^r (-1)^p * rC_p *(r-p)^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^(n)n+rC_(r)

Find the sum_(r)^(n)nquad rC_(r)

The value of sum_(r=0)^(n)sum_(p=0)^(r)n_(r)*rC_(p)

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .

If .^(n)P_(r)=.^(n)P_(r+1) and .^(n)C_(r)=.^(n)C_(r-1) , find n and r.

P(n,r)+P(n-1,r-1)=

Find n and r if .^(n)P_(r)=.^(n)P_(r+1)and^(n)C_(r)=^(n)C_(r-1) .

What is ""^(n-1)P_(r )+ ""^(n-1)P_(r-1) ?

Show that , .^(n)P_(r)=n.^(n-1)P_(r-1)=(n-r+1).^(n)P_(r-1) .