Home
Class 12
MATHS
If lim(x->1)cose c^(- 1)((k^2)/(lnx)-(k^...

If `lim_(x->1)cose c^(- 1)((k^2)/(lnx)-(k^2)/(x-1))` exists, then k belongs to the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If k=sin^(6)c+cos^(6)x, then k belongs to the interval

If k=sin^(6)x+cos^(6)x, then k belongs to the interval

lim_(x->1 (k^2/logx -k^2/(x-1))

Number of integral values of k for which lim_(xto1) sin^(-1)((k)/(log_(e)x)-(k)/(x-1)) exists is _________.

Number of integral values of k for which lim_(xto1) sin^(-1)((k)/(log_(e)x)-(k)/(x-1)) exists is _________.

Number of integral values of k for which lim_(xto1) sin^(-1)((k)/(log_(e)x)-(k)/(x-1)) exists is _________.

lim_(x->1)(x^2-x*lnx+lnx-1)/(x-1)

If lim_(x rarr oo)(x^(2)+3x+5)/(4x+1+x^(k)) exists then k=2(b)k 2(d)k>=2

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.