Home
Class 12
MATHS
if sum(k)/(k+1)*"^100Ck=(a *2^100+b)/c w...

if `sum(k)/(k+1)*"^100C_k=(a *2^100+b)/c` where `a,b,c in N` then find the least value of `a+b+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(k=0)^(100)((k)/(k+1))^(100)C_(k)=(x(2^(100))+y)/(z) where x,y,z in N then least value of xy^(2)z is equal to

Suppose that w is the imaginary (2009)^("th") roots of unity. If (2^(2009)-1)underset(r=1)overset(2008)(sum)(1)/(2-"w"^(r))=(a)(2^(b))+c where a, b, c, in N, and the least value of (a+b+c) is (2008)K. The numerical value of K is ___________

If sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the least value of (a + b + c) is pqrs then

If sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the least value of (a + b + c) is pqrs then

If a/2=b/3=c/5=(3a-5b+4c)/(K) then find the value of K.

If sum_(k = 0)^(18)(k)/(""^(18)C_(k))= a sum_(k=0)^(18)(1)/(""^(18)C_(k)) , then the value of a is a)3 b)9 c)6 d)18

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to