Home
Class 12
MATHS
[" 28."C(1)+2C(2)*a+3*C(3)*a^(2)+..........

[" 28."C_(1)+2C_(2)*a+3*C_(3)*a^(2)+............+2n*C_(2n)*a^(2n-1)=],[" 1) "n(1+a)^(n-1)," 2) "n(1+a)^(n)],[" 3) "2n(1+a)^(2n-1)," 4) "2n(1+a)^(2n)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If n>=2 then 3.C_(1)-4.C_(2)+5.C_(3)-.........+1)^(n-1)(n+2)*C_(n)=

Prove that "^(2n)C_1 + ^(2n)C_3 + .... + ^(2n)C_(2n-1) = 2^(2n-1)

""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) =

4C_(0)+(4^(2))/(2)*c_(1)+(4^(3))/(3)c_(2)+............+(4^(n+1))/(n+1)C_(n)=(5^(n+1)-1)/(n+1)

If (.^(2n)C_1)^2+ 2.(.^(2n)C_2)^2+3.(.^(2n)C_3)^2+...+2n. (.^(2n)C_(2n))^2 = 18 .^(4n-1)C_(2n-1)

(C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+(C_(3))/(5)+.......+(C_(n))/(n+2)=(1+n*2^(n+1))/((n+1)(n+2))

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

2C_0 + 2^2 (C_1)/(2) + 2^3 (C_2)/(3) + ………. + 2^(n+1) (C_n)/(n+1) = (3^(n+1) - 1)/(n+1)

1^(2)C_(1)-2^(2)C_(2)+3^(2)C_(3)-+(-1)^(n-1)n^(2)C_(n)=(1)(n^(2)*2^(n+1))/(n+1)(3)(2^(n+1))/(n-1)